2022

XXX Encontro de Jovens Pesquisadores

e XII Mostra Acadêmica de Inovação e Tecnologia

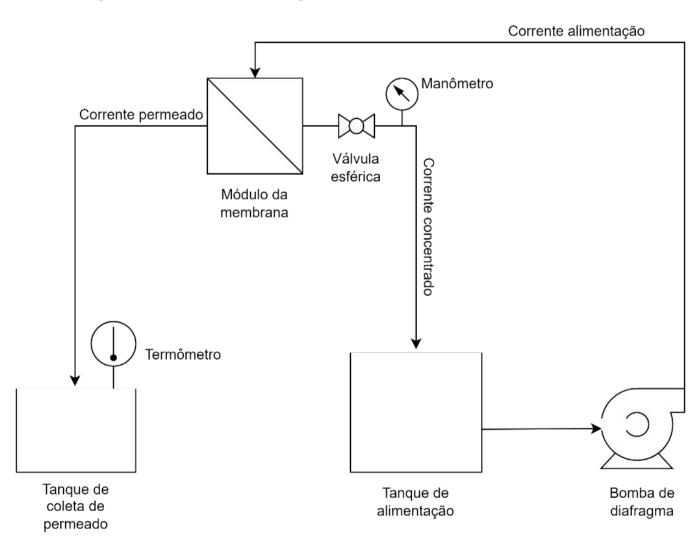
BIC-UCS

Remoção de íons ferro e manganês de efluentes através de processo de separação por osmose inversa **PERV-OLEO**

Autores: Isadora Peretti, Nathália Ferronato Livinalli e Camila Baldasso

INTRODUÇÃO / OBJETIVO

O Ferro e manganês estão de forma natural nos recursos hídricos devido às características do solo em que se encontram os mananciais. A Portaria GM/MS Nº 888 de 4 de maio de 2021, expedida pelo Ministério da Saúde, exige que as concentrações de ferro e manganês não ultrapassem 0,3 mg/L e 0,1 mg/L, respectivamente.

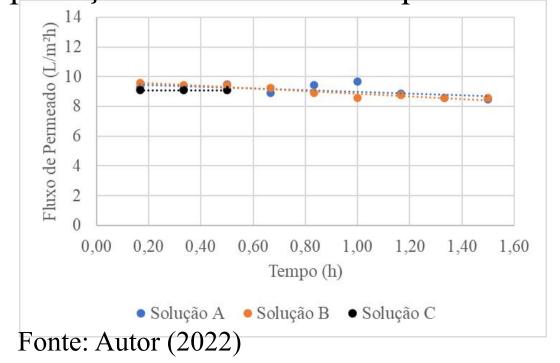

Os Processos de Separação por Membranas (PSM) permitem a separação entre um ou mais componentes presentes em uma mistura. Neste caso, a membrana atua como uma barreira seletiva, permitindo a passagem de componentes específicos. A osmose inversa (OI) é o PSM escolhido para este trabalho, visando o tratamento de efluentes para atender os padrões de potabilidade exigidos pela legislação.

MATERIAL E MÉTODOS

Utilizou-se uma membrana plana espiral de osmose inversa e 3 soluções de estudo, a A com sulfato de manganês (II) 50 mg/L, a B com sulfato de ferro (II) 50 mg/L e a C com 50 mg/L de ambos os sais.

Foram realizados ensaios de compactação, retenção, permeabilidade e a avaliação de eficiência da técnica de limpeza utilizada, a qual foi realizada com o auxílio de soluções de ácido cítrico e hidróxido de sódio.

Figura 1- Fluxograma da configuração utilizada nos ensaios

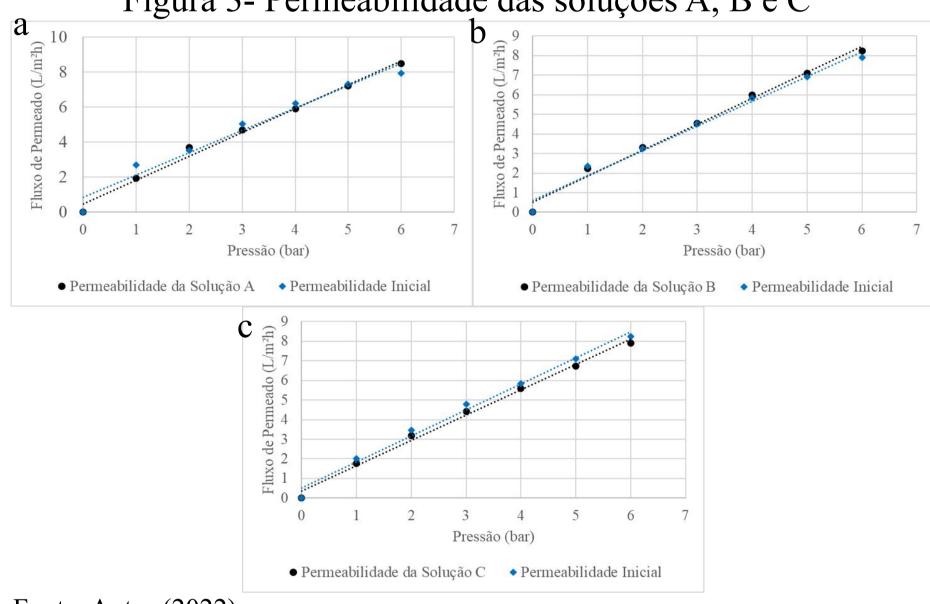


Fonte: Autor (2022)

RESULTADOS

A compactação das membranas foi realizada anteriormente ao restante dos ensaios, com água destilada. A Figura 2 mostra os resultados da compactação das membranas antes dos ensaios das soluções A, B e C.

Figura 2- Compactação antes dos ensaios para as soluções A, B e C



RESULTADOS

A compactação para a solução C ocorreu de maneira mais rápida, pois a membrana já estava em uso anteriormente à realização desse ensaio.

A diferença de comportamento no ensaio de permeabilidade entre a água destilada e as soluções de estudo pode ser observada nas Figuras 3 a, b e c para as soluções A. B e C, respectivamente.

Figura 3- Permeabilidade das soluções A, B e C

Fonte: Autor (2022)

Houve um decaimento de permeabilidade para a solução A e C, que continham uma concentração maior de íons. Os valores da permeabilidade para as soluções de estudo se mostraram menores em comparação aos da água pois havia a presença de íons, reduzindo-a.

Os resultados encontrados para retenção de íons nas soluções A e B foram de 99% e de 96% para a solução C.

Com relação a limpeza, para a solução A, a membrana foi completamente limpa. Já para as soluções B e C, ela também foi satisfatória, porém o desempenho da membrana se mostrou um pouco inferior, quando comparado com os valores iniciais.

CONSIDERAÇÕES FINAIS

Os resultados encontrados foram promissores, visto que a retenção de íons para as três soluções têm valores altos, com a solução B alcançando os valores exigidos pela Portaria GM/MS Nº 888 de 4 de maio de 2021. A metodologia de limpeza escolhida se mostrou eficaz, pois os valores de permeabilidade resultantes foram similares aos encontrados antes dos ensaios com as soluções de estudo.

REFERÊNCIAS BIBLIOGRÁFICAS

BRASIL, Ministério da Saúde. Portaria GM/MS Nº 888, de 4 de maio de 2021. Anexo XX, do controle e da vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. Brasília, DF: Diário Oficial da União, 05 mai. 2021. 127 p. Disponível em: https://www.in.gov.br/en/web/dou/-/portaria-gm/ms-n-888-de-4-de-maio-de-2021-318461562. LIVINALLI, Nathália Ferronato. Estudo da Performance de Processos de Separação por Membranas para a Remoção de Manganês e Ferro de Águas. Orientador: Camila Baldasso. 2021. 100 f. TCC (Graduação) - Curso de Engenharia Química, Universidade de Caxias do Sul, Caxias do Sul, 2021.

HABERT, S. C.; BORGES, C. P.; NOBREGA, R. **Processos de Separação por Membranas.** 1 ed. Rio de Janeiro: COPPE/UFRJ, E-papers, 2006.

APOIO

